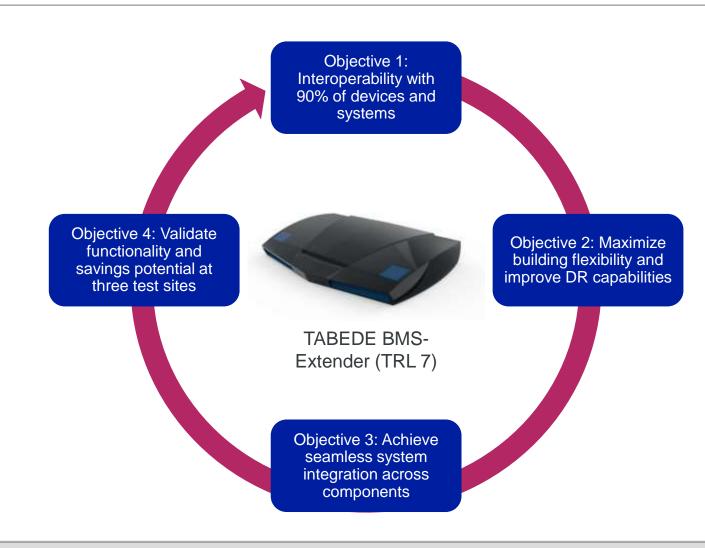
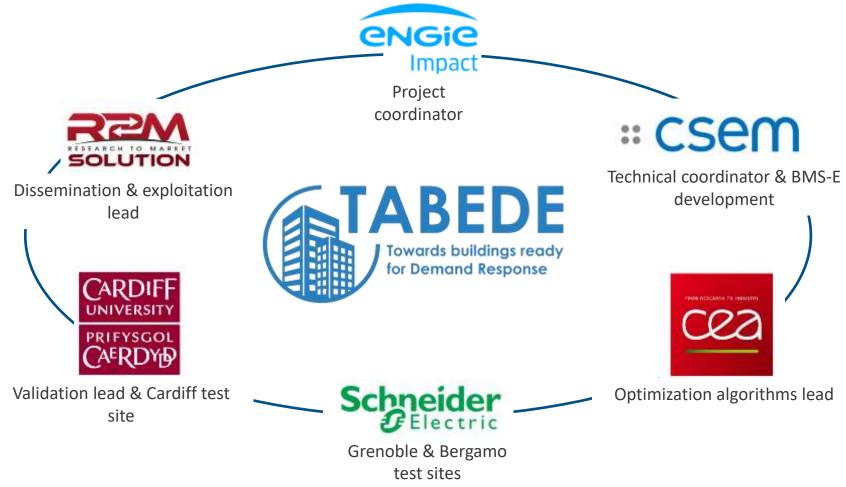


Flexibility 2.1: From Demand Response to Renewable Energy Communities

15 March 2021

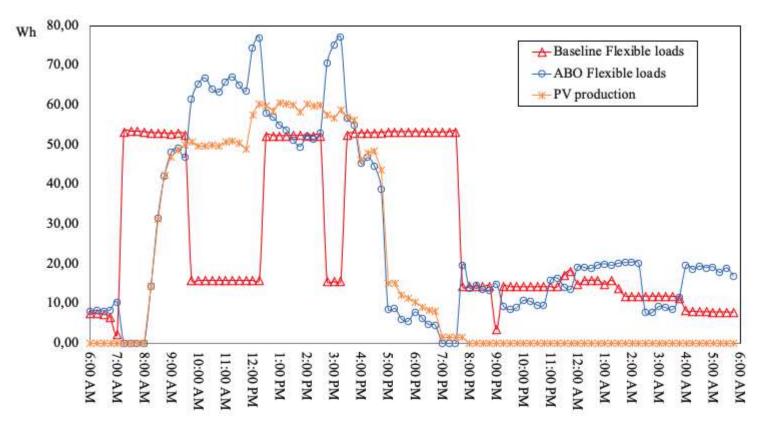

Andre de Fontaine ENGIE Impact andre.defontaine@engie.com

What is TABEDE?


TABEDE is a 3.5-year Horizon 2020 project that aims to allow all buildings to participate in demand response (DR) schemes, independently of communication protocols

The TABEDE system is a mix of hardware and software components that together optimize and control building loads based on DR signals, user preferences, and RES availability

Who is the TABEDE Consortium?


TABEDE Test Sites

Location	Туре	Objectives
1. Cardiff, UK	80 m ² , highly efficient smart house with 4 occupants	Load shifting to increase PV self-consumption by 10-25% and reduce energy costs by 10-30%
2. Bergamo, IT	160 m ² , typical home with average efficiency and 4 occupants	 Load shifting to reduce energy costs 10-30% Activate thermal storage mechanism to achieve 100% PV utilization
3. Grenoble, FR	11k m², highly efficient commercial/industrial building with 600 occupants	 Demonstrate TABEDE's applicability in a large, complex commercial building Achieve energy cost savings through implicit and explicit DR

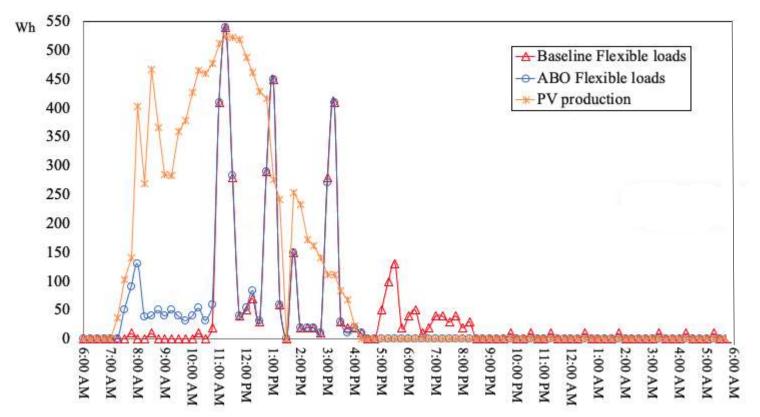
Preliminary TABEDE Results from the Cardiff Test Site

ToU Price simulation—Baseline vs. Optimized Flexible loads

Peak price: 0,20 €/kWh; Off peak: 0,13 €/kWh;

Export tariff: 0,04 €/kWh

	Baseline	Optimized	Difference	%
Total	5,73 kWh	5,73 kWh		
consumption				
Energy	4,06 kWh	3,81 kWh	0,24 kWh	-6%
import				
Energy	0,24 kWh	0,00 kWh	0,24 kWh	-100%
export				
Energy	0,73 €	0,68€	0,5 €	-8%
import cost				
Export	0,01€	0 €	0,01€	-100%
revenue				
Total daily	0,72 €	0,68 €	0,04 €	-6%
energy costs				


Across several similar tests, total daily energy cost savings have ranged from 4-12%

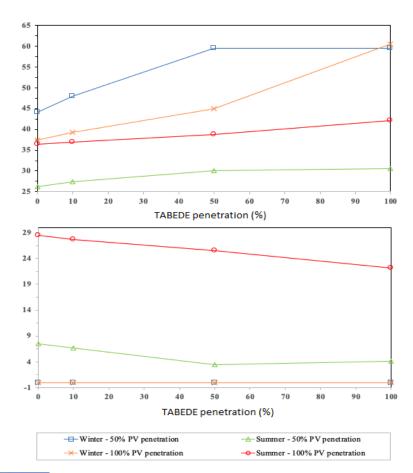
Funded by the European Union

Preliminary TABEDE Results from the Bergamo Test Site

ToU Price simulation—Baseline vs. Optimized Flexible loads

Peak price: 0,17 €/kWh; Off peak: 0,14 €/kWh;

Export tariff: 0,045 €/kWh


	Baseline	Optimized	Difference	%
Total	20,9 kWh	20,9 kWh		
consumption				
Energy	14,3 kWh	12,77 kWh	1,54 kWh	-11%
import				
Energy	4,78 kWh	3,24 kWh	1,54 kWh	-32%
export				
Energy	2,29 €	2,04 €	0,25 €	-11%
import cost				
Export	0,22€	0,15 €	-0,07 €	-11%
revenue				
Total daily	2,07 €	1,90 €	0,17 €	8%
energy costs				

Across several similar tests, total daily energy cost savings have ranged from 0,3-9%

Funded by the European Union

TABEDE District-Level Impacts—Early Results

- To assess TABEDE's impacts at scale, we built a simulated neighborhood of interconnected buildings
- This allows us to estimate aggregate savings across a large set of buildings, and grid level KPIs such as loss prevention, congestion relief, RES curtailment reduction
- In early tests, TABEDE is shown to increase PV self-consumption across a range of scenarios
- When we impose congestion limits, this increase in PV self-consumption can reduce RES curtailment by 22-45%, depending on the scenario
- Ultimately, TABEDE's impacts are highly dependent on the flexibility available within the buildings
- As a next step, we are incorporating behind-the-meter batteries to increase flexibility opportunities in the neighborhood

Funded by the European Union