

Future tamper-proof Demand response framework through self-configured, self-optimized and collaborative virtual distributed energy nodes

Presenter: Dr. Apostolos Tsolakis

Project Technical Management

CERTH/ITI Postdoctoral Research Fellow

DELTA has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 773960

DELTA Project Identity Card

Future tamper-proof **D**emand response framework through self-configured, self-optimized and collaborative virtual distributed energy nodes

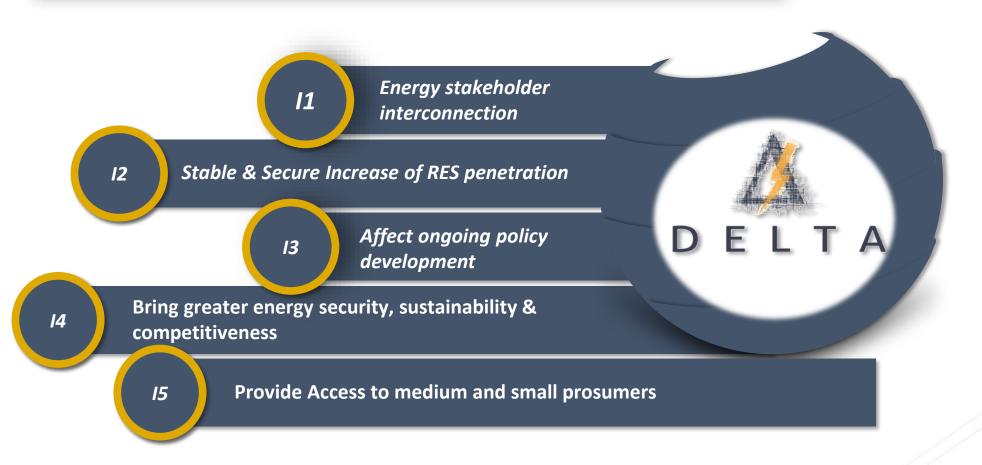
- H2020 Call: H2020-LCE-2016-2017,
 - Topic:LCE-01-2016-2017
- Funding Instrument: **RIA** (Research and Innovation Action)
- Duration: 36 Months (Started on 1 May 2018)
- 10 Partners from 8 countries

DELTA Vision & Concept

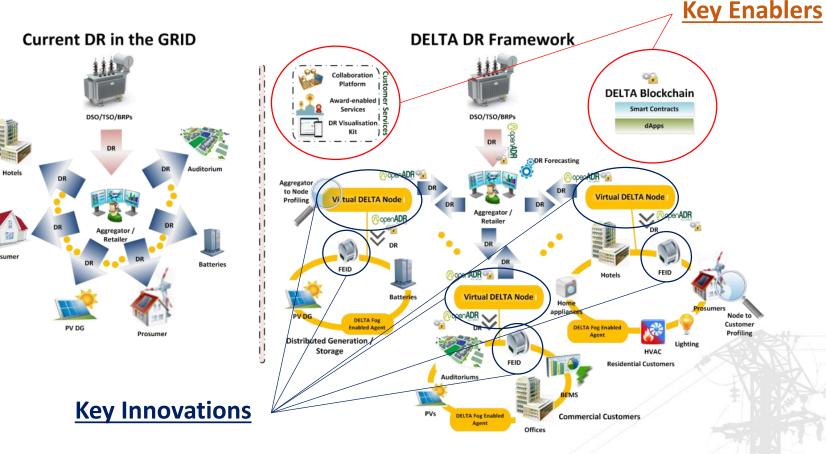
A new energy distribution structure

Today

- Demand Aggregators having DR contracts with large customers/businesses
- Inconvenient, semi-automated explicit DR
- Unreliable implicit DR
- Single-point, Centralized Management of Assets
- Fragmented standards/protocols for building monitoring & control systems


Tomorrow

- Exploit the untapped flexibility of small/medium prosumers, through a novel, secure DR Management Platform
- Ease Aggregator's computational effort through a **distributed intelligence** Architecture
- Engage prosumers in both explicit and implicit DR through a social collaboration and incentivization platform and personalized interfaces
- Achieve end-to-end interoperability through using/extending open source protocols (e.g. OpenADR)
- Propose new business models and recommendations for policy makers to accelerate market adoption

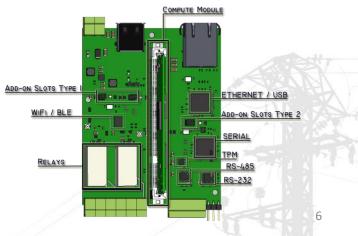


DELTA Vision & Concept

A new energy distribution structure (II)

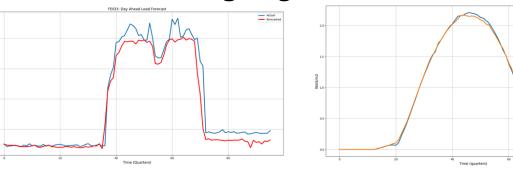
Objectives

- Relieve Aggregators from resource-intensive tasks: DELTA Virtual Node
- Establish an automated, efficient DR management structure: DELTA DR Management toolkit/ DELTA Fog-enabled Device
- Simplify and fortify complex and fortify complex and fortify complex and the second sec
- Enrich Aggregator's Portfolio by engaged Small/Medium prosumers: DELTA Collaboration Platform and Award enabled services

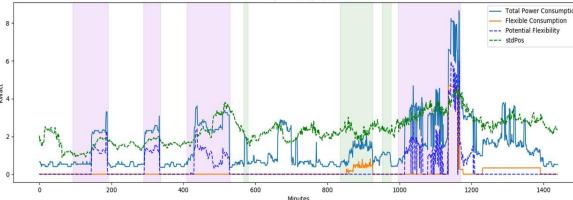


Fog-enabled intelligent Device (FEID)

- Implementation of a Novel powerful toolkit to empower small end medium customers to participate in DR programs:
 - Lightweight edge computing
 - Hardware Security (TPM 2.0)
 - Direct Communication with multiple Wired and Wireless protocols
 - Interfaces for communication with Smart Meters, BMS, EMS



DELTA Customer


Fog-enabled intelligent Device (FEID)

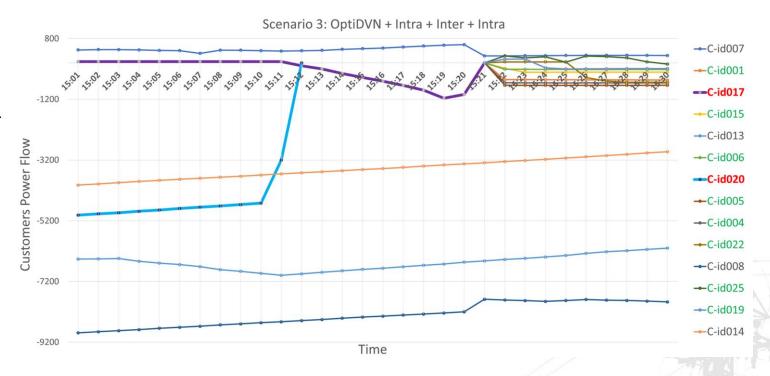
• Adaptive Load and PV forecasting engines

Algorithm : Extreme Gradient Boosting Execution Time : 5 seconds		
MAPE (%)	SMAPE (%)	RMSE (W)
8.08	4.31	73.66

- Cutting Edge Flexibility Estimation
 - Combination of unsupervised (flexibility patterns identification) and supervised (detection) models

DELTA Virtual Node

Following the Virtual Power Plant (VPP) Principles


- Multi-Agent Design that offers a highly robust DR management
 - Internal **Clustering** of customers based on adaptive characteristics
 - Flexibility, Availability, Reliability, ...
 - Cross validation on load/pv forecasting through individual and aggregated results
 - Intelligent **Optimal Dispatch** and **Fail-safe mechanisms** to ensure DR success
 - Introducing Flexibility as a virtual Distributed Energy Resource for optimization problems
 - Efficient Intra and Inter DVN communication to early identify shortcomings and deliver requested DR in real-time operation.

DELTA Virtual Node

Example of application

- VPP formed of 25 customers
- DR signal:
 - -20kW for the time window 15:00-15:30
- Optimisation Engine
 - C-id007, C-id008, C-id013, C-id014, Cid017, C-id020
- Failure of C-id020 at 15:11
 - safety valve 1 -> Inter
- Failure of C-id017 at 15:20
 - safety valve 2 -> Intra
- DR Completed successfully

D

DELTA Virtual Node

Results Discussion

• Faster execution times between rule-based and optimisation engines

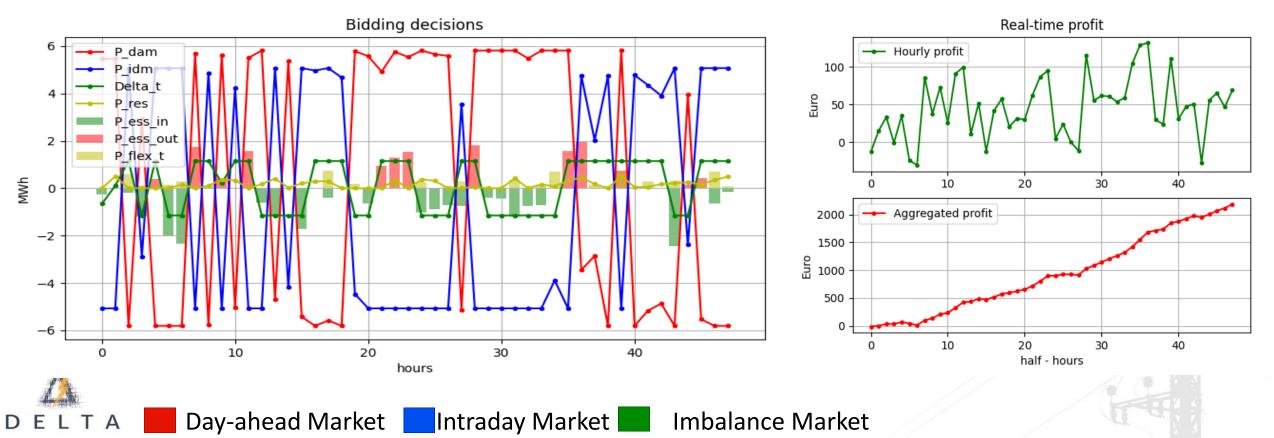
 can be considered most pertinent for such MAS-oriented resilient applications, especially when scaling up to hundreds, or even thousands of customers.

- Significant profit margins up to 3 orders of magnitude higher in some cases.
- More fair and balanced utilisation of customer assets, compared to greedy algorithms.
- Combining customer clustering with the optimization engine becomes better as the VPPs increases in size (large customer portfolio).
- The proposed scheme provides a **2-point-tolerant system**, a specification far above the standard in power systems communities (1-point-tolerance).

DELTA Aggregator

Business as Usual with Added-value services

- Efficient, automated, and dynamic Aggregation of Small and Medium customers
 - Handling each DVN as a larger customer
- Intra-day and Imbalance markets' price forecasting
 - Improved bidding and potential increase in revenues
- Unobtrusive collaboration with DSOs for ensuring Grid Stability
- Dynamic **optimization** based on spatiotemporal characteristics, DVN Reliability and Fairness.
- Gamification and collaboration (i.e. forum) services for enhanced end-user engagement
 - DR Games, Collaboration Games, Vouchers, etc.



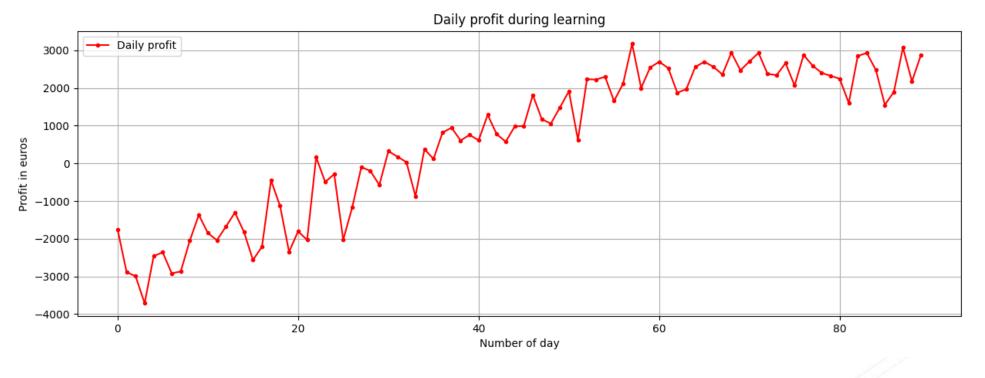
DELTA Aggregator

Two-stage Stochastic Programming for Bidding Decisions

Objective is to maximize the expected profit:

$$minimize - \sum_{s=1}^{N_s} \rho_s \cdot (\sum_{t=1}^{T} (\beta_{s,t}^{dam} \cdot P_{s,t}^{dam} + \beta_{s,t}^{idm} \cdot P_{s,t}^{idm} + \lambda_{s,t}^{im} \cdot \Delta_{s,t}^{im}))$$

DELTA Aggregator


D

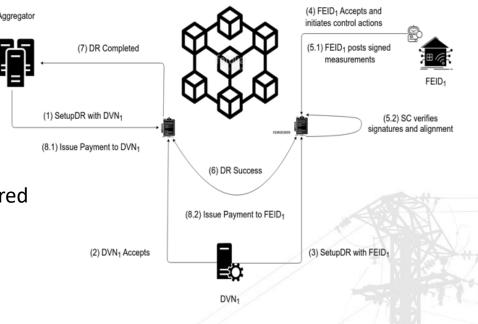
F

Reinforcement Learning DSS

Optimization of incentive-based flexibility exploitation

Learning period = 60 days + Evaluation period = 30 days. 90 days = 90 * 48 = 4320 episodes

DELTA Blockchain & Smart Contracts


Verifiable and Automated DR Transactive Framework

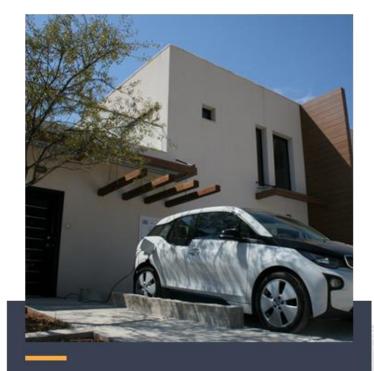
DELTA's Permissioned Blockchain

- HyperLedger Fabric
 - Consortium: Aggregator, large industrial clients, external auditors etc
- Distinct roles: Aggregator, DVN, FEID etc
- Fine-grained data access control policies
- Privacy & anonymity of transacting parties
- Logging measurements & tracking of energy supply chain

OpenADR smart contracts

- Automated, digital agents that encode, monitor and enforce arbitrary agreements among stakeholders
 - Computer-to-computer agreements, no human intervention required
- Monitoring & regulation of energy supply
- Financial settlement: earnings & penalties
- Smart contract templates for each particular use case, e.g.:
 - Time-of-Use tariffs (Implicit) and/or Direct Load Control (Explicit)

DELTA Pilot Deployment


Evaluation and Validation

UK Pilot – Residential and Commercial Buildings

Cyprus Pilot – University of Cyprus Campus

Pre-pilot lab testing – nZEB Smart Home of CERTH/ITI

DELTA Exploitation Potential

Feedback from the experts

Markets & Products Poll

DELTA next-level Demand Response

Contact Details:

Dr. Apostolos Tsolakis – Presenter tsolakis@iti.gr

Questions. Dr. Dimosthenis Ioannidis – Project Management djoannid@iti.gr

Dr. Dimitrios Tzovaras – Project Coordinator Dimitrios.Tzovaras@iti.gr

DELTA

Information **Technologies** Institute